Informació general


Tipus d'assignatura: Optativa

Coordinador: Joan Triadó Aymerich

Trimestre: Segon trimestre

Crèdits: 6

Professorat: 

Xavier Font Aragonés

Idiomes d'impartició


  • English

Curs impartit en Anglès

Competències


Competències transversals
  • CT1: Que els estudiants coneguin una tercera llengua, que serà preferentment l'anglès, amb un nivell adequat de forma oral i per escrit i d'acord amb les necessitats que tindran les graduades i els graduats en cada titulació.

  • CT2: Que els estudiants tinguin capacitat per a treballar com a membres d'un equip interdisciplinari ja sigui com un membre més, o realitzant tasques de direcció amb la finalitat de contribuir a desenvolupar projectes amb pragmatisme i sentit de la responsabilitat, assumint compromisos tenint en compte els recursos disponibles.

Descripció


Assignatura optativa emmarcada en el bloc de la menció en Fabricació Intel·ligent en la Indústria 4.0.

El seu objectiu és ajudar a l’estudiant a dominar els fonaments del Big Data, entendre la importància de la qualitat de les dades i introduir-se en l’ús d’eines analítiques aplicades a entorns de big data.

El curs descriu el procés d’examinar i tractar grans quantitats de dades i de diferent naturalesa per descobrir patrons ocults, obtenir noves perspectives i com visualitzar els resultats obtinguts. Es presenten alguns del avenços més utilitzats en l’actualitat agrupats en el que es denomina Deep Learning i es presenta la utilització d’entorns de digital twin.

L'aula (física o virtual) és un espai segur, lliure d'actituds masclistes, racistes, homòfobes, trànsfobes i discriminatòries, ja sigui cap a l'alumnat o cap al professorat. Confiem que entre totes i tots puguem crear un espai segur on ens puguem equivocar i aprendre sense haver de patir prejudicis d'altres.

 

Continguts


Continguts

 

Títol contingut 1: Introducció al Big Data

Dedicació:  

Grup Gran: 4

Grup Petit: 2

Aprenentatge autònom: 9

Descripció

  • Introducció al framework CRISP-DM
  • La industria 4.0 i la fabricació intel·ligent
  • Introducció al Big Data

Activitats vinculades

Activ1, Activ 2 i Activ 3

       

 

Títol contingut 2: Preparació de Dades

Dedicació:  

Grup Gran: 8

Grup Petit: 4

Aprenentatge autònom: 18

Descripció

  • Preparació de dades
  • Qualitat de les dades
  • Detecció de valors extrems i atípics
  • Reducció de la dimensionalitat
    • PCA
    • MDS

Activitats vinculades

Activ1, Activ 2, Act3 i Activ 4

       

 

Títol contingut 3: Mètodes d’Aprenentatge Supervisat

Dedicació:  

Grup Gran: 12

Grup Petit: 6

Aprenentatge autònom: 27

Descripció

  • Introducció i casos
  • GLM / Com avaluar el rendiment
  • XGBoost
  • Deep Learning
  • Estudi cas pràctic

Activitats vinculades

Activ1, Activ 2, Act3 i Activ 4

       

 

Títol contingut 4: Mètodes d’Aprenentatge No Supervisat

Dedicació: 

Grup Gran: 8

Grup Petit: 4

Aprenentatge autònom: 18

Descripció

  • Introducció
  • Mètodes jeràrquics
  • K-means
  • Clustering Espectral
  • DBSCAN
  • Estudi cas pràctic

Activitats vinculades

Activ1, Activ 2, Act3 i Activ 4

       

 

Títol contingut 5Visualització de resultats

Dedicació: 

Grup Gran: 4

Grup Petit: 2

Aprenentatge autònom: 9

Descripció

  • Introducció a la visualització
  • Eines i mètodes de Reporting
  • Presentació de dades

Activitats vinculades

Activ 2, Act3 i Activ 4

       

 

 

 

 

Títol contingut 6: Mètodes Avançats

Dedicació: 

Grup Gran: 4

Grup Petit: 2

Aprenentatge autònom: 9

Descripció

  • Deep Generative Models
  • Reinforcement Learning
  • Manteniment Predictiu
  • Digital twin

Activitats vinculades

Activ2, Activ 3 i Activ 4

Sistema d'avaluació


ACTIVITATS

PES

EXÀMENS

Pex1 25%

EXERCICIS

ExiPar 15%

PRÀCTIQUES

Lab 25%

PROJECTE

Proj 35%

 

 

 

 

 

 

 

 

La qualificació final és la suma ponderada de les qualificacions de les activitats d’aprenentatge:

Q = 0.25 Pex1 + 0.35 Proj + 0.15 ExiPar + 0.25 Lab

Observacions relatives a la Recuperació:

La part de teoria de l’assignatura Pex1 sí que és recuperable així com la part de Projecte. La resta de parts no son recuperables. Per als estudiants que assisteixin a l’examen de recuperació la seva qualificació Pex1 serà la obtinguda en aquesta prova i la seva qualificació final (Q) es calcularà amb les fórmules anteriorment detallades i en cap cas no serà superior a 7.

Normes de realització de les activitats

Observacions:

Per superar les activitats avaluatives, els estudiants hauran de demostrar el Nivell MECES - 2:

• (punt c) tenir la capacitat de recopilar i interpretar dades i informacions sobre les que fonamentar les seves conclusions incloent-hi, quan calgui i sigui pertinent, la reflexió sobre assumptes d'índole social, científica o ètica en l'àmbit del seu camp d'estudi

• (punt e) saber comunicar a tot tipus d'audiències (especialitzades o no) de manera clara i precisa, coneixements, metodologies, idees, problemes i solucions en l'àmbit del seu camp d'estudi;

• (punt f) ser capaços d'identificar les seves pròpies necessitats formatives en el seu camp d'estudi i entorn laboral o professional i d'organitzar el seu propi aprenentatge amb un alt grau d'autonomia en tot tipus de contextos

Per a cada activitat, els docents n'informaran de les normes i condicions particulars que les regeixin

Les activitats unipersonals pressuposen el compromís de l'estudiant de realitzar-les de manera individual i sense cap mena de col·laboració amb d’altres persones. Es consideraran suspeses (qualificació 0) totes aquelles activitats en què l'estudiant no s'ajusti a aquest compromís d’individualitat, independentment del seu paper (emissor o receptor) i sense que això exclogui la possible aplicació d’altres sancions d’acord amb el Règim Disciplinari vigent.

 

Igualment, les activitats que s'hagin de realitzar en grup pressuposen el compromís per part dels estudiants que l'integren de realitzar-les en el si del grup i sense cap mena de col·laboració amb d’altres grups o persones que en siguin alienes (individualitat grupal). Es consideraran suspeses (qualificació 0) totes aquelles activitats en què el grup no hagi respectat aquest compromís amb independència del seu paper (emissor o receptor) i sense que això exclogui la possible aplicació d’altres sancions d’acord amb el Règim Disciplinari vigent.

En el cas d’activitats que puguin fer-se en grup, quan en alguna d’elles no es respecti el compromís d’individualitat grupal i/o s’utilitzin mitjans fraudulents en la seva realització, la qualificació de l’activitat  serà, per a tots els membres del grup, de 0 punts (Nota Activitat=0) i sense que això exclogui la possible aplicació d’altres sancions d’acord amb el Règim Disciplinari vigent.

 

Qualsevol activitat no lliurada es considerarà puntuada amb zero punts.

És potestatiu dels docents acceptar o no lliuraments fora dels terminis que s'indiquin. En el cas que aquests lliuraments fora de termini s'acceptin, és potestatiu del docent decidir si aplica alguna penalització i la seva quantia.

Bibliografia


Bàsic

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (MIT Press) 1st Edition John D. Kelleher, Brian Mac Namee and Aoife D'Arcy

The MIT Press; 1 edition July – 2015

ISBN 978-0262029445

Complementary

Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI 1st Edition Darren Cook

O'Reilly Media; 1 edition, December 2016

ISBN 978-1491964606

Practical Big Data Analytics: Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R. by Nataraj Dasgupta (Packt Publishing; 1st Ed - 2018)