Informació general


Tipus d'assignatura: Obligatòria

Coordinador: Enric Camón Luis

Trimestre: Segon trimestre

Crèdits: 4

Professorat: 

Jose Ignacio Monreal Galán

Idiomes d'impartició


  • English

Competències


Competències bàsiques
  • B3_Que els estudiants tinguin la capacitat de reunir i interpretar dades rellevants (normalment dins de la seva àrea d'estudi), per emetre judicis que incloguin una reflexió sobre temes rellevants de caire social, científic o ètic

     

  • B5_Que els estudiants hagin desenvolupat aquelles habilitats d'aprenentatge necessàries per emprendre estudis posteriors amb un alt grau d'autonomia

Competències específiques
  • E9_Utilitzar les eines matemàtiques i eines avançades d'estadística per a la presa de decisions i pel contrast d'hipòtesis econòmiques vàries

     

Competències generals
  • G1_Ser capaç de treballar en equip, participant activament en les tasques i negociant enfront opinions discrepants fins arribar a posicions de consens, adquirint així l'habilitat per aprendre conjuntament amb altres membres de l'equip i crear nous coneixements

Competències transversals
  • T1_Comunicar amb propietat de forma oral i escrita en les dies llengües oficials a Catalunya

  • T4_Dominar les eines informàtiques i les seves principals aplicacions per a l'activitat acadèmica i professional ordinària

Descripció


L’assignatura "Inferència estadística per a la gestió empresarial" és la continuació de l'assignatura "Fonaments d'estadística i Anàlisi de dades", que els estudiants han cursat previament. L'assignatura vol establir en l'estudiant uns coneixements teòrics sòlids sobre la matèria, així com incidir en la capacitat de la seva aplicació pràctica en l'estudi del món real, especialment en l'àmbit económic.

En particular, en aquesta assignatura s'abordaran els conceptes bàsics de la inferència estadística, començant amb les distribucions mostrals de la mitjana i la proporció, la modelització de dades univariants, els intervals de confiança i els contrastos d'hipòtesis. A més, els contrastos de comparació més elementals porten a l'estudi de la regressió lineal simple i múltiple.

Es tracta doncs d’una assignatura instrumental en què es proporcionen eines estadistiques que s’utilitzen en diferents contextos. A més cal destacar el paper dels ordinadors en la facilitació de l'estudi de bases de dades.

Continguts


1. Introducció a la inferència estadística

Concepte de mostra, població, estadístic i paràmetre.

Distribucions poblacionals i mostrals

Distribucions Binomial, Normal i t-Student.

Mostreig.

 

2. Estimació puntual de paràmetres poblacionals. Intervals de confiança de paràmetres poblacionals. La grandària mostral

Distribució de la mitjana mostral, de la proporció mostral i de la suma o diferència de mitjanes o proporcions mostrals. El Teorema del Límit Central.

Concepte d'estimador: Robustesa, biaix i eficiència d'un estimador.

Estimació puntual de la mitjana, la variança, la desviació estàndard i la proporció poblacionals. L'error estàndard.

Estimació per interval. Nivell de confiança. Error d'estimació.

Intervals de confiança de la mitjana poblacional, de la proporció poblacional, de la diferència de mitjanes poblacionals i de la diferència de proporcions poblacionals

Relació entre la grandària mostral i l'error d'estimació i càlcul de la grandària mostral per estimar la mitjana o proporció poblacional.

 

3. Contrast d'hipòtesis estadístiques

Conceptes d'hipòtesi nul•la i hipòtesi alternativa. Nivell de significació, Error tipus I (alfa), error tipus II (beta). P-valor. Valor crític. Zona de rebuig d’hipòtesi nul·la.

Contrast de la mitjana poblacional.

Contrast de la proporció poblacional.

Contrast de la diferència de mitjanes poblacionals per a mostres independents.

Contrast de la diferència de proporcions poblacionals per a mostres independents

 

4. Diseny d'experiments: Anàlisi de la variància a un factor i Taules de Contingència

Comparació de més de dues mitjanes poblacionals: Anàlisi de la variància (ANOVA), Distribució F de Fisher-Snedecor.

Test d'independència d'atributs: La distribució Chi-Quadrat.

 

5. Introducció a l'anàlisi dels Models de Regressió Lineal (simple i múltiple)

El Model de Regressió Lineal Simple: intepretació del pendent, bondat de l'ajust.

El Model de Regresió Lineal Múltiple Ordinari: Hipòtesis prèvies. Inferència sobre el model: significació conjunta del model, significació individual dels coeficients. Bondat de l'ajust: el coeficient de determinació. Transformacions sobre variables.

Sistema d'avaluació


El 40% de la nota de l’assignatura correspondrà a l’avaluació continuada durant el curs, a partir de la participació i presentació de treballs.

El 60% de la nota de l’assignatura correspondrà a un examen al final del trimestre, on l’estudiant haurà d’obtenir una certa qualificació mínima sobre 10 per poder acumular la qualificació de l’avaluació continuada.

Per superar l’assignatura cal que la nota mitjana ponderada sigui superior o igual a 5.

Si l’estudiant no supera el curs, podrà optar a una recuperació de l’examen final (60% de la nota total) en el període indicat en el calendari acadèmic, amb la condició d’obtenir una certa qualificació mínima sobre 10 per poder acumular la qualificació de l’avaluació continuada. No es fa recuperació de les activitats portades a terme en l'avaluació continuada.

Nota de seminaris i qüestionaris online

10%

Treball individual + treball en grup

30%

Examen final

60%

Un alumne que no s'hagi presentat a la primera convocatòria NO pot presentar-se a la recuperació.

Bibliografia


Bàsic

MOORE, D.S., MCCABE, G.P., CRAIG, B,A, (2012) Introduction to the practice of Statistics, 7th edition. Freeman.

MOORE, D. S. (2009) Estadística aplicada básica, 2a. ed. Antoni Bosch Editor

https://estamatica.net/manual-de-stata/

KOHLER, U. and KREUTER, F. (2012). Data Analysis Using Stata, Third Edition. Stata Press.

ESCOBAR MERCADO, M. FERNÁNDEZ MACÍAS, E. and BERNARDI, F. (2012). Cuadernos Metodológicos Análisis de datos con Stata, Segunda Edición. Stata Press.

Complementary

MAYO, D. (2018). Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars. Cambridge University Press.

NEWBOLD, PAUL, Carlson, W., Thorne, W. (2007), Estadística para los negocios y la economía, 6ta edición,Madrid, Prentice Hall.

MOORE, D., (1995), The basic practice of Satatistics. Freeman.

WONNACOTT, WONNACOTT (1990), Introductory Statistics for business and economics, Wiley and sons.

THOMAS, J. J. (1980), Introducción al análisis estadístico para economistas. Marcombo.

PEÑA, D., ROMO, J., (1997), Introducción a la estadística para las ciencias sociales, Madrid, McGrau-Hill / Interamericana de España, S.A.U.

JOHNSON, BHATTACHRYYA (1992), Statistics, principles and methods. Wiley and sons.

FREEDMAN, D. (1993), Estadística. Modelos y métodos. Barcelona, A. Bosch ed.

http://www.ugr.es/~proman/ED/Comenzando_DescriptivaUnidim_RCommander.pdf

PEÑA, D. (1991), Estadística. Modelos y métodos, Madrid. Alianza Universidad Textos.

https://cran.r-project.org/doc/contrib/Saez-Castillo-RRCmdrv21.pdf

http://yunus.hacettepe.edu.tr/~ncokca/kndnt/201516_BD/ECO232_R%20Commander_PartOne.pdf

http://yunus.hacettepe.edu.tr/~ncokca/kndnt/201516_BD/ECO232_R%20Commander_PartTwo.pdf

TROSSET, M. W. (2009) An Introduction to Statistical Inference and Its Applications with R. 1st Edition. Chapman and Hall/CRC

ELOSUA OLIDEN , P., ETXEBERRÍA MURGIONDO, J. (2012) R Commander. Gestión y análisis de datos. Cuadernos de Estadística. Editorial La Muralla.

LIERO, H. ZWANZIG, S. (2011) Introduction to the theory of Statistical Inference. 1st edition. Chapman & Hall/CRC Texts in Statistical Science.